AGÕæÈ˹ٷ½

STOCK TITAN

MicroAlgo Inc. Adopts Quantum Phase Estimation (QPE) Method to Enhance Quantum Neural Network Training

Rhea-AI Impact
(Neutral)
Rhea-AI Sentiment
(Positive)
Tags
MicroAlgo Inc. (NASDAQ: MLGO) has announced the adoption of Quantum Phase Estimation (QPE) method to enhance its Quantum Neural Network (QNN) training capabilities. The company has implemented a comprehensive quantum circuit construction process that includes state initialization, controlled unitary operations, and inverse Quantum Fourier Transform application. The technology leverages quantum computing's parallelism to accelerate neural network training, particularly benefiting image processing and natural language processing applications. The QPE method enables more efficient parameter optimization, improved training stability through error correction, and enhanced processing speed and accuracy compared to traditional methods. This advancement positions MicroAlgo to better handle large-scale image datasets and natural language processing tasks like machine translation and text classification.
MicroAlgo Inc. (NASDAQ: MLGO) ha annunciato l'adozione del metodo Quantum Phase Estimation (QPE) per migliorare le capacità di addestramento della sua Quantum Neural Network (QNN). L'azienda ha implementato un processo completo di costruzione di circuiti quantistici che include l'inizializzazione dello stato, operazioni unitarie controllate e l'applicazione della trasformata di Fourier quantistica inversa. Questa tecnologia sfrutta il parallelismo del calcolo quantistico per accelerare l'addestramento delle reti neurali, con benefici particolari per le applicazioni di elaborazione delle immagini e del linguaggio naturale. Il metodo QPE consente un'ottimizzazione più efficiente dei parametri, una maggiore stabilità dell'addestramento grazie alla correzione degli errori e un aumento della velocità e precisione rispetto ai metodi tradizionali. Questo progresso posiziona MicroAlgo in modo vantaggioso per gestire grandi dataset di immagini e compiti di elaborazione del linguaggio naturale come la traduzione automatica e la classificazione dei testi.
MicroAlgo Inc. (NASDAQ: MLGO) ha anunciado la adopción del método Quantum Phase Estimation (QPE) para mejorar las capacidades de entrenamiento de su Red Neuronal Cuántica (QNN). La compañía ha implementado un proceso integral de construcción de circuitos cuánticos que incluye la inicialización del estado, operaciones unitarias controladas y la aplicación de la Transformada Cuántica de Fourier inversa. Esta tecnología aprovecha el paralelismo de la computación cuántica para acelerar el entrenamiento de redes neuronales, beneficiando especialmente aplicaciones de procesamiento de imágenes y procesamiento de lenguaje natural. El método QPE permite una optimización de parámetros más eficiente, una mayor estabilidad en el entrenamiento gracias a la corrección de errores, y una mejora en la velocidad y precisión en comparación con métodos tradicionales. Este avance posiciona a MicroAlgo para manejar mejor grandes conjuntos de datos de imágenes y tareas de procesamiento de lenguaje natural como la traducción automática y la clasificación de textos.
MicroAlgo Inc. (NASDAQ: MLGO)ëŠ� ì–‘ìž ì‹ ê²½ë§�(QNN) 훈련 능력ì� í–¥ìƒì‹œí‚¤ê¸� 위해 ì–‘ìž ìœ„ìƒ ì¶”ì •(QPE) 방법ì� ë„입했다ê³� 발표했습니다. 회사ëŠ� ìƒíƒœ 초기í™�, 제어 단위 ì—°ì‚°, ì—� ì–‘ìž í‘¸ë¦¬ì—� ë³€í™� ì ìš©ì� í¬í•¨í•˜ëŠ” í¬ê´„ì ì¸ ì–‘ìž íšŒë¡œ 구성 과정ì� 구현했습니다. ì� ê¸°ìˆ ì€ ì–‘ìž ì»´í“¨íŒ…ì˜ ë³‘ë ¬ì„±ì„ í™œìš©í•˜ì—¬ ì‹ ê²½ë§� 훈련ì� ê°€ì†í™”하며, 특히 ì´ë¯¸ì§€ 처리 ë°� ìžì—°ì–� 처리 ì‘ìš© 분야ì—� ì´ì ì� 제공합니ë‹�. QPE ë°©ë²•ì€ ë§¤ê°œë³€ìˆ� 최ì í™”ì˜ íš¨ìœ¨ì„±ì„ ë†’ì´ê³�, 오류 수정으로 훈련 ì•ˆì •ì„±ì„ ê°œì„ í•˜ë©°, 기존 방법ì—� 비해 처리 ì†ë„와 정확ë„를 í–¥ìƒì‹œí‚µë‹ˆë‹¤. ì� ë°œì „ì€ MicroAlgoê°€ 대규모 ì´ë¯¸ì§€ ë°ì´í„°ì…‹ê³� 기계 번역, í…스íŠ� 분류 ê°™ì€ ìžì—°ì–� 처리 작업ì� ë� 효과ì ìœ¼ë¡� 처리í•� ìˆ� 있ë„ë¡� 합니ë‹�.
MicroAlgo Inc. (NASDAQ : MLGO) a annoncé l’adoption de la méthode d’estimation de phase quantique (QPE) afin d’améliorer les capacités d’entraînement de son réseau neuronal quantique (QNN). L’entreprise a mis en place un processus complet de construction de circuits quantiques incluant l’initialisation de l’état, des opérations unitaires contrôlées et l’application de la transformée de Fourier quantique inverse. Cette technologie exploite le parallélisme de l’informatique quantique pour accélérer l’entraînement des réseaux neuronaux, bénéficiant notamment aux applications de traitement d’images et de traitement du langage naturel. La méthode QPE permet une optimisation plus efficace des paramètres, une meilleure stabilité de l’entraînement grâce à la correction d’erreurs, ainsi qu’une vitesse et une précision accrues par rapport aux méthodes traditionnelles. Cette avancée place MicroAlgo en meilleure position pour gérer de grands ensembles de données d’images et des tâches de traitement du langage naturel telles que la traduction automatique et la classification de textes.
MicroAlgo Inc. (NASDAQ: MLGO) hat die Einführung der Quantum Phase Estimation (QPE)-Methode angekündigt, um die Trainingskapazitäten ihres Quantum Neural Network (QNN) zu verbessern. Das Unternehmen hat einen umfassenden Prozess zur Konstruktion von Quanten-Schaltkreisen implementiert, der Zustandsinitialisierung, kontrollierte unitäre Operationen und die Anwendung der inversen Quanten-Fourier-Transformation umfasst. Die Technologie nutzt die Parallelität des Quantencomputings, um das Training neuronaler Netze zu beschleunigen, was insbesondere Anwendungen in der Bildverarbeitung und der natürlichen Sprachverarbeitung zugutekommt. Die QPE-Methode ermöglicht eine effizientere Parameteroptimierung, verbesserte Trainingsstabilität durch Fehlerkorrektur sowie eine gesteigerte Verarbeitungsgeschwindigkeit und Genauigkeit im Vergleich zu herkömmlichen Methoden. Dieser Fortschritt positioniert MicroAlgo besser, um groß angelegte Bilddatensätze und Aufgaben der natürlichen Sprachverarbeitung wie maschinelle Übersetzung und Textklassifikation zu bewältigen.
Positive
  • Implementation of advanced Quantum Phase Estimation (QPE) technology for neural network training optimization
  • Enhanced processing capabilities in image recognition and natural language processing applications
  • Improved efficiency and accuracy in neural network training through quantum computing parallelism
  • Scalable technology platform that can adapt to future quantum computing advancements
Negative
  • None.

SHENZHEN, China, June 6, 2025 /PRNewswire/ -- MicroAlgo Inc. (the "Company" or "MicroAlgo") (NASDAQ:ÌýMLGO), explored the possibilities of quantum technology in various application scenarios, particularly in the training of Quantum Neural Networks (QNNs). Quantum Neural Networks combine the advantages of quantum computing and machine learning, promising revolutionary breakthroughs in fields such as data processing and pattern recognition.

Quantum Phase Estimation (QPE) is a key technique in quantum computing that leverages quantum superposition and interference principles to efficiently estimate the phase information of quantum states. In quantum neural network training, QPE is used to optimize network parameters. By precisely estimating the phase of quantum states, QPE can accelerate the convergence process of the network, improving training efficiency. This approach fully exploits the parallelism of quantum computing, enabling the processing of more information in the same amount of time, thereby significantly enhancing the training speed and accuracy of neural networks.

Quantum Circuit Construction: A quantum circuit with multiple qubits is constructed, mapping the structure and functionality of the neural network to provide the foundation for the training process. The circuit design must be precise to ensure that qubits accurately represent the parameters of the neural network.

Quantum State Initialization: A series of quantum gate operations are applied to initialize the qubits, placing them in specific quantum states. These quantum states correspond to the initial parameters of the neural network, serving as the starting point and foundation for the training process.

Execution of Controlled Unitary Operations: Controlled unitary operations are applied to entangle the neural network's parameters with auxiliary qubits, accumulating phase information. By repeatedly applying controlled unitary operations with different powers, phase information is gradually accumulated onto the auxiliary qubits.

Application of Inverse Quantum Fourier Transform: The inverse Quantum Fourier Transform is applied to the auxiliary qubits, converting the quantum state from the Fourier basis to the computational basis. Phase information is extracted and converted into classical bit values for subsequent parameter optimization.

Parameter Optimization and Iteration: Based on the estimated phase information, the neural network's parameters are optimized to make the network output closer to the desired results. Through multiple iterations, parameters are continuously adjusted until the network achieves the expected training performance.

Error Correction and Stability Enhancement: Advanced quantum error correction techniques are employed to reduce disturbances affecting qubits during operations. This improves the precision of phase estimation and the training stability of the neural network, ensuring the reliability of training results.

Quantum phase estimation has brought revolutionary changes to various fields through its application in MicroAlgo's quantum neural network training. In image processing, quantum phase estimation enables quantum neural networks to classify and recognize images more efficiently, significantly outperforming traditional methods in both speed and accuracy. This technology makes the processing of large-scale image datasets faster and more precise, opening new possibilities for applications in image recognition and medical image analysis. In natural language processing, by optimizing network parameters, quantum neural networks can better understand and generate natural language text, demonstrating significant advantages in tasks such as machine translation, intelligent customer service, and text classification. The introduction of this technology not only enhances the efficiency of natural language processing but also improves its accuracy and fluency.

The application of quantum phase estimation in MicroAlgo's quantum neural network training not only fully utilizes the parallelism of quantum computing, greatly accelerating the training process of neural networks, enabling more information to be processed in the same amount of time, and significantly improving training efficiency. At the same time, by precisely estimating the phase of quantum states, quantum phase estimation also optimizes the parameters of the neural network, enhancing the network's accuracy, making the neural network perform more outstandingly in various tasks. In addition, this technology has good scalability, capable of adapting to the continuous development of quantum computing technology and the increase in the number of qubits, providing strong support for larger-scale quantum neural network training.

In the future, with the continuous advancement of quantum computing technology and the increasing number of qubits, the application of quantum phase estimation in quantum neural network training will become more extensive and in-depth.

About MicroAlgo Inc.
MicroAlgo Inc.Ìý(the "MicroAlgo"), aÌýCayman IslandsÌýexempted company, is dedicated to the development and application of bespoke central processing algorithms. MicroAlgo provides comprehensive solutions to customers by integrating central processing algorithms with software or hardware, or both, thereby helping them to increase the number of customers, improve end-user satisfaction, achieve direct cost savings, reduce power consumption, and achieve technical goals. The range of MicroAlgo'sÌýservices includes algorithm optimization, accelerating computing power without the need for hardware upgrades, lightweight data processing, and data intelligence services. MicroAlgo's ability to efficiently deliver software and hardware optimization to customers through bespoke central processing algorithms serves as a driving force for MicroAlgo's long-term development.

Forward-Looking Statements
This press release contains statements that may constitute "forward-looking statements." Forward-looking statements are subject to numerous conditions, many of which are beyond the control of MicroAlgo, including those set forth in the Risk Factors section of MicroAlgo's periodic reportsÌýon FormsÌý10-KÌýand 8-KÌýfiled with the SEC. Copies are available on the SEC's website,Ìý. Words such as "expect," "estimate," "project," "budget," "forecast," "anticipate," "intend," "plan," "may," "will," "could," "should," "believes," "predicts," "potential," "continue," and similar expressions are intended to identify such forward-looking statements. These forward-looking statements include, without limitation, MicroAlgo's expectations with respect to future performance and anticipated financial impacts of the business transaction.

MicroAlgo undertakes no obligation to update these statements for revisions or changes after the date of this release, except as may be required by law.

Ìý

Cision View original content:

SOURCE Microalgo.INC

FAQ

What is the significance of MicroAlgo's (MLGO) Quantum Phase Estimation implementation?

MicroAlgo's QPE implementation enhances Quantum Neural Network training by improving processing speed, accuracy, and efficiency through quantum computing parallelism, particularly benefiting image processing and natural language tasks.

How does MLGO's Quantum Phase Estimation technology improve neural network training?

The technology accelerates convergence process, enables more efficient parameter optimization, and improves training stability through quantum error correction techniques, resulting in faster and more accurate neural network training.

What are the main applications of MicroAlgo's (MLGO) enhanced Quantum Neural Network?

The main applications include improved image processing, medical image analysis, machine translation, intelligent customer service, and text classification, with enhanced speed and accuracy compared to traditional methods.

What is the future outlook for MicroAlgo's (MLGO) Quantum Phase Estimation technology?

The technology is designed to scale with advancing quantum computing capabilities and increasing qubit numbers, positioning it for expanded applications in larger-scale quantum neural network training.
MicroAlgo Inc

NASDAQ:MLGO

MLGO Rankings

MLGO Latest News

MLGO Latest SEC Filings

MLGO Stock Data

12.32M
22.35M
1.85%
7.1%
37.06%
Software - Infrastructure
Services-computer Programming Services
China
NEW YORK